Named Entity Recognition on Turkish Tweets
نویسندگان
چکیده
Various recent studies show that the performance of named entity recognition (NER) systems developed for well-formed text types drops significantly when applied to tweets. The only existing study for the highly inflected agglutinative language Turkish reports a drop in FMeasure from 91% to 19% when ported from news articles to tweets. In this study, we present a new named entity-annotated tweet corpus and a detailed analysis of the various tweet-specific linguistic phenomena. We perform comparative NER experiments with a rule-based multilingual NER system adapted to Turkish on three corpora: a news corpus, our new tweet corpus, and another tweet corpus. Based on the analysis and the experimentation results, we suggest system features required to improve NER results for social media like Twitter.
منابع مشابه
Experiments to Improve Named Entity Recognition on Turkish Tweets
Social media texts are significant information sources for several application areas including trend analysis, event monitoring, and opinion mining. Unfortunately, existing solutions for tasks such as named entity recognition that perform well on formal texts usually perform poorly when applied to social media texts. In this paper, we report on experiments that have the purpose of improving nam...
متن کاملNamed Entity Recognition on Twitter for Turkish using Semi-supervised Learning with Word Embeddings
Recently, due to the increasing popularity of social media, the necessity for extracting information from informal text types, such as microblog texts, has gained significant attention. In this study, we focused on the Named Entity Recognition (NER) problem on informal text types for Turkish. We utilized a semi-supervised learning approach based on neural networks. We applied a fast unsupervise...
متن کاملNERTUW: Named Entity Recognition on Tweets using Wikipedia
We propose an approach to recognize named entities in tweets, disambiguate and classify them into four categories namely person, organization, location and miscellaneous using Wikipedia. Our approach annotates the tweets on the fly, ie, it does not require any training data.
متن کاملJoint Inference of Named Entity Recognition and Normalization for Tweets
Tweets represent a critical source of fresh information, in which named entities occur frequently with rich variations. We study the problem of named entity normalization (NEN) for tweets. Two main challenges are the errors propagated from named entity recognition (NER) and the dearth of information in a single tweet. We propose a novel graphical model to simultaneously conduct NER and NEN on m...
متن کاملNamed Entity Recognition in Tweets: An Experimental Study
People tweet more than 100 Million times daily, yielding a noisy, informal, but sometimes informative corpus of 140-character messages that mirrors the zeitgeist in an unprecedented manner. The performance of standard NLP tools is severely degraded on tweets. This paper addresses this issue by re-building the NLP pipeline beginning with part-of-speech tagging, through chunking, to named-entity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014